- I AMINCO AIR-DRIVEN DIAPHRAGM - GAS COMPRESSOR - 2 ELECTRICALLY-DRIVEN DIAPHRAGM GAS COMPRESSOR - 3 PRESSURE GAUGE - 4 RUPTURE DISK - 5 MITY-MITE PRESSURE REGULATOR - 6 NITROGEN SUPPLY CYLINDER - 7 MICRON FILTER - 8 STAGNANT AIR BATH - 9 CALORIMETER - 10 CONSTANT TEMPERATURE GLYCOL BATH Fig. 1. Schematic flow diagram of isothermal throttling calorimeter. The time required to perform a single run was on the order of 8 to 12 hr. This length of time was required to reach steady state operation. The high total heat capacity of the calorimeter relative to that of the fluid led to a sluggish response of changes in power input. ## EXPERIMENTAL RESULTS Compositions of the two mixtures studied are given in Table 1. Experimental results are given in Table 2 for methane and the two mixtures. The uncorrected Δh values are the raw data, that is, the enthalpy differences between the outlet and inlet conditions of the calorimeter. These Δh values were corrected from the calorimeter outlet pressure (15 to 50 lb./sq. in. abs.) to zero outlet pressure and for small differences between the inlet and outlet temperatures of the calorimeter (\sim 0.2°F.). The pressure TABLE 1. COMPOSITIONS OF METHANE-PROPANE MIXTURES | Component | Mole Percent Compositions | | |---|---------------------------|--------------------| | | $94\%\mathrm{CH_4}$ | 86%CH ₄ | | methane ethane propane carbon dioxide oxygen nitrogen isobutane | 93.90 | 86.23° | | | 0.27 | 0.28 | | | 5.09 | 12.57° | | | 0.20 | 0.41 | | | 0.01 | 0.01 | | | 0.53 | 0.49 | | | Trace | Trace | | | 100.00 | 100.00 | $^{\circ}$ Adjusted from original values of 86.47 \pm 0.5 and 12.61 \pm 0.4 to give a total of 100.00. - II PREHEATER - 12 MANOMETER - 13 ROTAMETER - 14 THREE-WAY SOLENOID VALVE - 15 SURGE TANK - 16 COLLECTION BOMBS IMMERSED IN LIQUID NITROGEN - 17 12-GALLON STORAGE CYLINDER - 18 THERMOMETER - 19 GLASS COLLECTION BOMBS - 20 MCLEOD GAUGE - 21 ABSOLUTE MANOMETER corrections were made using a truncated virial equation of state and experimental second virial coefficients for the gases (5, 8). Ideal gas state heat capacities (1) and a generalized correlation for the effect of pressure on heat capacity (9) were used in making temperature correc- Fig. 2. Enthalpy of methane at 150°F.